Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Am Chem Soc ; 146(14): 9721-9727, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38556809

RESUMEN

The volumetric density of the metal atomic site is decisive to the operating efficiency of the photosynthetic nanoreactor, yet its rational design and synthesis remain a grand challenge. Herein, we report a shell-regulating approach to enhance the volumetric density of Co atomic sites onto/into multishell ZnxCd1-xS for greatly improving CO2 photoreduction activity. We first establish a quantitative relation between the number of shell layers, specific surface areas, and volumetric density of atomic sites on multishell ZnxCd1-xS and conclude a positive relation between photosynthetic performance and the number of shell layers. The triple-shell ZnxCd1-xS-Co1 achieves the highest CO yield rate of 7629.7 µmol g-1 h-1, superior to those of the double-shell ZnxCd1-xS-Co1 (5882.2 µmol g-1 h-1) and single-shell ZnxCd1-xS-Co1 (4724.2 µmol g-1 h-1). Density functional theory calculations suggest that high-density Co atomic sites can promote the mobility of photogenerated electrons and enhance the adsorption of Co(bpy)32+ to increase CO2 activation (CO2 → CO2* → COOH* → CO* → CO) via the S-Co-bpy interaction, thereby enhancing the efficiency of photocatalytic CO2 reduction.

2.
bioRxiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38562808

RESUMEN

The antigenic evolution of the influenza A virus hemagglutinin (HA) gene poses a major challenge for the development of vaccines capable of eliciting long-term protection. Prior efforts to understand the mechanisms that govern viral antigenic evolution mainly focus on HA in isolation, ignoring the fact that HA must act in concert with the viral neuraminidase (NA) during replication and spread. Numerous studies have demonstrated that the degree to which the receptor binding avidity of HA and receptor cleaving activity of NA are balanced with each other influences overall viral fitness. We recently showed that changes in NA activity can significantly alter the mutational fitness landscape of HA in the context of a lab-adapted virus strain. Here, we test whether natural variation in relative NA activity can influence the evolutionary potential of HA in the context of the seasonal H1N1 lineage (pdmH1N1) that has circulated in humans since the 2009 pandemic. We observed substantial variation in the relative activities of NA proteins encoded by a panel of H1N1 vaccine strains isolated between 2009 and 2019. We comprehensively assessed the effect of NA background on the HA mutational fitness landscape in the circulating pdmH1N1 lineage using deep mutational scanning and observed pronounced epistasis between NA and residues in or near the receptor binding site of HA. To determine whether NA variation could influence the antigenic evolution of HA, we performed neutralizing antibody selection experiments using a panel of monoclonal antibodies targeting different HA epitopes. We found that the specific antibody escape profiles of HA were highly contingent upon NA background. Overall, our results indicate that natural variation in NA activity plays a significant role in governing the evolutionary potential of HA in the currently circulating pdmH1N1 lineage.

3.
Spine J ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38614156

RESUMEN

BACKGROUND CONTEXT: A subgroup of patients with pelvic anteversion can present with an unusually large degree of lumbar lordosis (LL), a highly sloped sacrum, and a relatively small pelvic incidence (PI). Prior to lumbar surgery, it is can be important to consider such unique sagittal alignment. However, until now, there has been a lack of a predictive model considering different pelvic alignments. Furthermore, the dynamic characteristics of an anteverted pelvis (AP) subgroup have also been unclear. PURPOSE: To build linear predictive formulas for LL that take pelvic anteversion into consideration and to explore the dynamic characteristics of an AP subgroup. STUDY DESIGN: Monocentric, cross-sectional study. PATIENT SAMPLE: 565 asymptomatic Chinese men and women between the ages of 18 and 80 years. OUTCOME MEASURES: Sagittal parameters including LL, lumbar lordosis minus thoracic kyphosis (LL-TK), (PI), pelvic tilt (PT), pelvic incidence minus lumbar lordosis (PI-LL), sacral slope (SS), sacral slope divided by pelvic incidence (SS/PI), sagittal vertical axis (SVA), thoracic kyphosis (TK), and T1 (first thoracic vertebra) pelvic angle (TPA) were measured on whole spine radiographs obtained with participants in standing and sitting positions. METHODS: All participants underwent radiography in the standing position; 235 of them underwent additional radiography in the sitting position to allow measurement of sagittal parameters. The participants with pelvic anteversion were placed in an AP (anteverted pelvis) group. Sagittal parameters were compared between the AP group and the non-AP group, and predictive formulas for LL based on PI were created in both groups. In addition, changes in sagittal parameters from standing to sitting were compared in the AP group and a PI-matched control group. RESULTS: Of the 565 participants, 171 (30.3%) had pelvic anteversion. In comparison with the non-AP group, the AP group presented with larger LL, a larger SS, and a smaller PT, with relatively small PI. The predictive formulas for LL were LL = 0.60°â€¯× PI + 21.60° (R2 = 0.268; P < 0.001) in the whole cohort, LL = 0. 83 × PI + 18.75° (R2 = 0.427; P < 0.001) in AP group, and LL = 0.79°â€¯× PI + 9.66° (R2 = 0.451; P < 0.001) in the non-AP group. In moving from standing to sitting, the AP group presented with a larger decrease in SS and LL compared with the control group, indicating different patterns of spinopelvic motion. CONCLUSIONS: In the cohort examined, 30.3% present with pelvic anteversion. Those with AP present with unique characteristics of spinopelvic alignment. In moving from standing to sitting, they exhibit different patterns of spinopelvic motion. We found that identifying the degree of anteversion in each person improves the accuracy of linear models for predicting the degree of LL, which in turn can make plans for spine surgery more accurate.

4.
Sci Transl Med ; 16(738): eadk1866, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478630

RESUMEN

Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (NASH), is an advanced stage of metabolic fatty liver disease. The pathogenic mechanisms of MASH center on hepatocyte injury and the ensuing immune response within the liver microenvironment. Recent work has implicated TREM2+ macrophages in various disease conditions, and substantial induction of TREM2+ NASH-associated macrophages (NAMs) serves as a hallmark of metabolic liver disease. Despite this, the mechanisms through which NAMs contribute to MASH pathogenesis remain poorly understood. Here, we identify membrane-spanning 4-domains a7 (MS4A7) as a NAM-specific pathogenic factor that exacerbates MASH progression in mice. Hepatic MS4A7 expression was strongly induced in mouse and human MASH and associated with the severity of liver injury. Whole-body and myeloid-specific ablation of Ms4a7 alleviated diet-induced MASH pathologies in male mice. We demonstrate that exposure to lipid droplets (LDs), released upon injury of steatotic hepatocytes, triggered NAM induction and exacerbated MASH-associated liver injury in an MS4A7-dependent manner. Mechanistically, MS4A7 drove NLRP3 inflammasome activation via direct physical interaction and shaped disease-associated cell states within the liver microenvironment. This work reveals the LD-MS4A7-NLRP3 inflammasome axis as a pathogenic driver of MASH progression and provides insights into the role of TREM2+ macrophages in disease pathogenesis.


Asunto(s)
Inflamasomas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Masculino , Ratones , Inflamasomas/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores Inmunológicos/metabolismo
5.
Food Chem X ; 21: 101232, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38420507

RESUMEN

Sunlight exposure of grape clusters is frequently reported to influence grape aromas greatly. Among them, the effects of full shading (FS) of clusters on fruit quality and volatile compounds in grape berries has scarcely been investigated. In the present study, the effects of FS from véraison to ripeness on fruit quality and volatile compounds in Cabernet Sauvignon grapes were studied. The results showed that FS treatment reduced fruit size and berry weight, delayed fruit maturity, and decreased the contents of anthocyanins, phenols, and tannins in grape berries. In addition, volatile compounds in grape berries were analyzed, and 55 and 53 volatile compounds were detected in the control (CK) and FS groups, respectively. The results indicated that the concentrations of straight-chain fatty aldehydes, straight-chain fatty alcohols, straight-chain fatty acids, and branched-chain fatty acids, norisoprenoids, and total concentration of volatile compounds were all higher in FS group than in CK group. Specifically, FS treatment had significant promoting effects on the concentrations of ß-damascenone, terpineol, 2-ethyl-1-hexanol, and 2-hexenal, and remarkably decreased the concentrations of geranial, benzeneacetaldehyde, neral, and ethyl acetate. Partial least squares-discriminant analysis (PLS-DA) revealed a clear separation between the control (CK) and FS groups, and showed that 2-hexenal and hexanal were the main characteristic aroma compounds in the FS group. Moreover, an increase in the intensity of fruity, herbaceous, floral, and mushroom aromas was recorded in FS grapes. This study provides new insights into the effects of the exclusion of sunlight exposure on volatile compound accumulation in grape berries.

6.
Hum Vaccin Immunother ; 20(1): 2313860, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38359815

RESUMEN

The primary objective of this paper is to serve as a valuable resource for policymakers who are confronted with the evolving landscape of the coronavirus disease 2019 (COVID-19), considering both free and cost-based vaccination approaches. The potential consequences of shifting from free to cost-based vaccination are explored, encompassing its impact on global vaccine equity and prioritization, economic well-being, healthcare systems and delivery, public health policies, and vaccine distribution strategies. Examining past studies on willingness to pay for the initial COVID-19 vaccine dose and booster shots provides insights into how individuals value COVID-19 vaccinations and underscores the significance of addressing issues related to affordability. If COVID-19 vaccinations incur expenses, using effective communication strategies that emphasize the importance of vaccination and personal health benefits can increase willingness to pay. Making COVID-19 vaccines accessible through public health programs or health insurance can help alleviate financial barriers and increase vaccination rates.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Pandemias , Vacunación , Inmunización Secundaria
7.
Expert Rev Clin Immunol ; 20(5): 559-569, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38224014

RESUMEN

OBJECTIVE: This study aimed to check the expression profile of the C-X-C motif chemokine ligands (CXCLs)-C-X-C motif chemokine receptor 2 (CXCR2) axis in cervical cancer and to explore the cross-talk between cervical cancer cells and neutrophils via CXCLs-CXCR2 axis. METHODS: Available RNA-sequencing data based on bulk tissues and single-cell/nucleus RNA-sequencing data were used for bioinformatic analysis. Cervical cancer cell lines Hela and SiHa cells were utilized for in vitro and in vivo studies. RESULTS: Except for neutrophils, CXCR2 mRNA expression is limited in other types of cells in the cervical tumor microenvironment. CXCLs bind to CXCR2 and are mainly expressed by tumor cells. CXCL1, 2, 3, 5, 6, and 8, which are consistently associated with neutrophil infiltration, are also linked to poor prognosis. SB225002 (a CXCR2 inhibitor) treatment significantly impairs SiHa cell-induced neutrophil migration. CXCL1, CXCL2, CXCL5, or CXCL8 neutralized conditioned medium from SiHa cells have weaker recruiting effects. The conditioned medium of neutrophils from healthy donors can slow cancer cell proliferation. Conditioned medium of tumor-associated neutrophils (TANs) can drastically enhance cervical cancer cell growth in vitro and in vivo. CONCLUSIONS: The CXCLs-CXCR2 axis is critical in neutrophil recruitment and tumor cell proliferation in the cervical cancer microenvironment.


Asunto(s)
Neutrófilos , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Medios de Cultivo Condicionados/metabolismo , ARN/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Microambiente Tumoral
8.
JCI Insight ; 9(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38015639

RESUMEN

Interorgan crosstalk via secreted hormones and metabolites is a fundamental aspect of mammalian metabolic physiology. Beyond the highly specialized endocrine cells, peripheral tissues are emerging as an important source of metabolic hormones that influence energy and nutrient metabolism and contribute to disease pathogenesis. Neuregulin 4 (Nrg4) is a fat-derived hormone that protects mice from nonalcoholic steatohepatitis (NASH) and NASH-associated liver cancer by shaping hepatic lipid metabolism and the liver immune microenvironment. Despite its enriched expression in brown fat, whether NRG4 plays a role in thermogenic response and mediates the metabolic benefits of cold exposure are areas that remain unexplored. Here we show that Nrg4 expression in inguinal white adipose tissue (iWAT) is highly responsive to chronic cold exposure. Nrg4 deficiency impairs beige fat induction and renders mice more susceptible to diet-induced metabolic disorders under mild cold conditions. Using mice with adipocyte and hepatocyte-specific Nrg4 deletion, we reveal that adipose tissue-derived NRG4, but not hepatic NRG4, is essential for beige fat induction following cold acclimation. Furthermore, treatment with recombinant NRG4-Fc fusion protein promotes beige fat induction in iWAT and improves metabolic health in mice with diet-induced obesity. These findings highlight a critical role of NRG4 in mediating beige fat induction and preserving metabolic health under mild cold conditions.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Hormonas , Mamíferos , Neurregulinas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Termogénesis
9.
Hepatology ; 79(2): 409-424, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505219

RESUMEN

BACKGROUND AND AIMS: NASH represents a severe stage of fatty liver disease characterized by hepatocyte injury, inflammation, and liver fibrosis. Myeloid-derived innate immune cells, such as macrophages and dendritic cells, play an important role in host defense and disease pathogenesis. Despite this, the nature of transcriptomic reprogramming of myeloid cells in NASH liver and its contribution to disease progression remain incompletely defined. APPROACH AND RESULTS: In this study, we performed bulk and single-cell RNA sequencing (sc-RNA seq) analysis to delineate the landscape of macrophage and dendritic cell transcriptomes in healthy and NASH livers. Our analysis uncovered cell type-specific patterns of transcriptomic reprogramming on diet-induced NASH. We identified brain-abundant membrane-attached signal protein 1 (Basp1) as a myeloid-enriched gene that is markedly induced in mouse and human NASH liver. Myeloid-specific inactivation of Basp1 attenuates the severity of diet-induced NASH pathologies, as shown by reduced hepatocyte injury and liver fibrosis in mice. Mechanistically, cultured macrophages lacking Basp1 exhibited a diminished response to pro-inflammatory stimuli, impaired NLRP3 inflammasome activation, and reduced cytokine secretion. CONCLUSIONS: Together, these findings uncover Basp1 as a critical regulator of myeloid inflammatory signaling that underlies NASH pathogenesis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/patología , Hepatocitos/metabolismo , Dieta , Cirrosis Hepática/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
10.
Appl Opt ; 62(17): 4409-4414, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37707131

RESUMEN

A highly sensitive and reliable tunable diode laser absorption spectroscopy gas detection system with a temperature-pressure compensation algorithm is demonstrated for detecting C H 4 concentrations in near space. Near space generally refers to the airspace 20-100 km away from the ground, where temperature and pressure changes are complex. Since the gas absorption spectrum is easily affected by temperature and pressure, a temperature-pressure compensation algorithm is proposed and used in the C H 4 sensor to improve the detection accuracy of the sensor. First, we measured the basic characteristics of the sensor in the laboratory, such as linearity and long-term stability. Experimental results showed that the linear correlation coefficient R-square can reach 0.999, and the concentration fluctuation of C H 4 is less than 0.17 ppm within 3.5 h. Then the sensor was applied to a research activity in Qinghai Province, China, in September, and the results show that the sensor can effectively monitor the C H 4 concentration in near space.

11.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37765018

RESUMEN

CXCL8-CXCR1/CXCR2 signaling pathways might form complex crosstalk among different cell types within the ovarian tumor microenvironment, thereby modulating the behaviors of different cells. This study aimed to investigate the expression pattern of CXCL8 in the ovarian tumor microenvironment and its impact on both endothelial-to-mesenchymal transition (EndMT) and ferroptosis of endothelial cells. The human monocytic cell line THP-1 and the human umbilical vein endothelial cell line PUMC-HUVEC-T1 were used to conduct in vitro studies. Erastin was used to induce ferroptosis. Results showed that tumor-associated macrophages are the major source of CXCL8 in the tumor microenvironment. CXCL8 treatment promoted the nucleus entrance of NF-κB p65 and p65 phosphorylation via CXCR2 in endothelial cells, suggesting activated NF-κB signaling. Via the NF-κB signaling pathway, CXCL8 enhanced TGF-ß1-induced EndMT of PUMC-HUVEC-T1 cells and elevated their expression of SLC7A11 and GPX4. These trends were drastically weakened in groups with CXCR2 knockdown or SB225002 treatment. TPCA-1 reversed CXCL8-induced upregulation of SLC7A11 and GPX4. CXCL8 protected endothelial cells from erastin-induced ferroptosis. However, these protective effects were largely canceled when CXCR2 was knocked down. In summary, CXCL8 can activate the NF-κB signaling pathway in endothelial cells in a CXCR2-dependent manner. The CXCL8-CXCR2/NF-κB axis can enhance EndMT and activate SLC7A11 and GPX4 expression, protecting endothelial cells from ferroptosis.

12.
J Clin Transl Hepatol ; 11(5): 1118-1129, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37577230

RESUMEN

Background and Aims: The growing knowledge of ferroptosis has suggested the regulatory role of ferroptosis in hepatocellular carcinoma (HCC), but the pertinent molecular mechanisms remain unclear. Herein, this study investigated the mechanistic basis of ferroptosis-related genes (ferrGenes) in the growth of HCC. Methods: Differentially expressed human ferrGenes and tumor-related transcription factors (TFs) were obtained from the The Cancer Genome Atlas (TCGA) dataset and the GTEx dataset. Spearman method-based correlation analysis were conducted to construct TF-ferrGene coexpression regulatory network. Key genes associated with prognosis were singled out with Lasso regression and multivariate Cox analysis to construct the prognostic risk model. Then the accuracy and independent prognostic ability of the model were evaluated. Expression of CENPA and STMN1 was determined in clinical HCC tissues and HCC cells, and their binding was analyzed with dual-luciferase and chromatin immunoprecipitation (ChIP) assays. Furthermore, ectopic expression and knockdown assays were performed in HCC cells to assess the effect of CENPA and STMN1 on ferroptosis and malignant phenotypes. Results: The prognostic risk model constructed based on the eight TF-ferrGene regulatory network-related genes accurately predicted the prognosis of HCC patients. It was strongly related to the clinical characteristics of HCC patients. Moreover, CENPA/STMN1 might be a key TF-ferrGene regulatory network in ferroptosis of HCC. CENPA and STMN1 were overexpressed in HCC tissues and cells. Additionally, CENPA facilitated STMN1 transcription by binding to STMN1 promoter, thus facilitating the malignant phenotypes and suppressing the ferroptosis of HCC cells. Conclusions: Taken together, CENPA curbs the ferroptosis of HCC cells by upregulating STMN1 transcription, thereby promoting HCC growth.

13.
J Phys Chem Lett ; 14(34): 7759-7765, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37611090

RESUMEN

Na3V2(PO4)2F3 (NVPF) is a representative cathode material of sodium-ion batteries (SIBs) due to its high working voltage and high structural stability. However, its specific capacity is limited to the reversible inserting and extracting of two sodium ions per formula unit, which hampers the improvement of its energy density. In this study, we propose a new NASICON-type Na4MnCr(PO4)2F3 (NMCPF) cathode and systematically investigate its key properties using first-principles calculations. NMCPF exhibits the ability to extract/insert three sodium ions per formula unit, resulting in a high specific capacity of 180.34 mAh/g, and demonstrates three-electron redox reactions involving three redox couples of Mn2+/3+ (3.05 V), Mn3+/4+ (4.11 V), and Cr3+/4+ (4.64 V). Consequently, its energy density can reach 709.33 Wh/kg. In addition, NMCPF exhibits a small volume change of 8.2% during the charging/discharging process and sodium ion diffusion properties comparable to those of NVPF. This study demonstrates the potential of NMCPF as a promising cathode material with high energy density for SIBs.

14.
Nat Commun ; 14(1): 4257, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468484

RESUMEN

Skeletal muscle and thermogenic adipose tissue are both critical for the maintenance of body temperature in mammals. However, whether these two tissues are interconnected to modulate thermogenesis and metabolic homeostasis in response to thermal stress remains inconclusive. Here, we report that human and mouse obesity is associated with elevated Musclin levels in both muscle and circulation. Intriguingly, muscle expression of Musclin is markedly increased or decreased when the male mice are housed in thermoneutral or chronic cool conditions, respectively. Beige fat is then identified as the primary site of Musclin action. Muscle-transgenic or AAV-mediated overexpression of Musclin attenuates beige fat thermogenesis, thereby exacerbating diet-induced obesity and metabolic disorders in male mice. Conversely, Musclin inactivation by muscle-specific ablation or neutralizing antibody treatment promotes beige fat thermogenesis and improves metabolic homeostasis in male mice. Mechanistically, Musclin binds to transferrin receptor 1 (Tfr1) and antagonizes Tfr1-mediated cAMP/PKA-dependent thermogenic induction in beige adipocytes. This work defines the temperature-sensitive myokine Musclin as a negative regulator of adipose thermogenesis that exacerbates the deterioration of metabolic health in obese male mice and thus provides a framework for the therapeutic targeting of this endocrine pathway.


Asunto(s)
Tejido Adiposo Beige , Tejido Adiposo Blanco , Animales , Humanos , Masculino , Ratones , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Homeostasis , Mamíferos , Ratones Endogámicos C57BL , Músculos/metabolismo , Obesidad/metabolismo , Termogénesis
15.
Neural Regen Res ; 18(11): 2514-2519, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37282484

RESUMEN

Parkinson's disease is a neurodegenerative disorder, and ferroptosis plays a significant role in the pathological mechanism underlying Parkinson's disease. Rapamycin, an autophagy inducer, has been shown to have neuroprotective effects in Parkinson's disease. However, the link between rapamycin and ferroptosis in Parkinson's disease is not entirely clear. In this study, rapamycin was administered to a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease mouse model and a 1-methyl-4-phenylpyridinium-induced Parkinson's disease PC12 cell model. The results showed that rapamycin improved the behavioral symptoms of Parkinson's disease model mice, reduced the loss of dopamine neurons in the substantia nigra pars compacta, and reduced the expression of ferroptosis-related indicators (glutathione peroxidase 4, recombinant solute carrier family 7, member 11, glutathione, malondialdehyde, and reactive oxygen species). In the Parkinson's disease cell model, rapamycin improved cell viability and reduced ferroptosis. The neuroprotective effect of rapamycin was attenuated by a ferroptosis inducer (methyl (1S,3R)-2-(2-chloroacetyl)-1-(4-methoxycarbonylphenyl)-1,3,4,9-tetrahyyridoindole-3-carboxylate) and an autophagy inhibitor (3-methyladenine). Inhibiting ferroptosis by activating autophagy may be an important mechanism by which rapamycin exerts its neuroprotective effects. Therefore, the regulation of ferroptosis and autophagy may provide a therapeutic target for drug treatments in Parkinson's disease.

16.
Mol Carcinog ; 62(10): 1474-1486, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37283234

RESUMEN

Since chemotherapy's therapeutic impact is diminished by drug resistance, treating ovarian cancer is notably challenging. Thereafter, it is critical to develop cutting-edge approaches to treating ovarian cancer. Baohuoside I (derived from Herba Epimedii) is reported to have antitumor properties in various malignancies. It is unknown, however, what role Baohuoside I plays in cisplatin (DDP)-resistant ovarian cancer cells. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT), colony formation, and flow cytometry assay were used to investigate the impact of Baohuoside I on ovarian cancer A2780 cells and DDP-resistant A2780 (A2780/DDP) cells. The level of microtubule associated protein 1 light chain 3 (LC3) was determined using immunofluorescence staining. Utilizing the mRFP-GFP-LC3B tandem fluorescent probe allowed us to analyse the autophagy flux. Analysis of mRNA and protein level was performed using RT-qPCR and Western blot analysis, respectively. The interaction between hypoxia inducible factor 1 subunit alpha (HIF-1α) and autophagy related 5 (ATG5) promoter was investigated by dual luciferase and ChIP assay. Additionally, evaluation of Baohuoside I's role in ovarian cancer was performed using a nude mouse xenograft model. Baohuoside I decreased the viability and proliferation and triggered the apoptosis of both A2780 and A2780/DDP cells in a concentration-dependent manner. Baohuoside I also increased the sensitivity of A2780/DDP cells to DDP. Concurrently, HIF-1α could promote A2780/DDP cells resistance to DDP. In addition, HIF-1α could induce the autophagy of A2780/DDP cells through transcriptionally activating ATG5, and Baohuoside I imporved the chemosensitivity of A2780/DDP cells to DDP by downregulating HIF-1α. Moreover, Baohuoside I could inhibit the chemoresistance to DDP in ovarian cancer in vivo. Baohuoside I sensitizes ovarian cancer cells to DDP by suppressing autophagy via downregulating the HIF-1α/ATG5 axis. Consequently, Baohuoside I might be evaluated as a new agent for enhancing the chemotherapeutic efficacy of drug treatment for ovarian cancer.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Animales , Ratones , Humanos , Femenino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Autofagia , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular , Proteína 5 Relacionada con la Autofagia
17.
J Exp Med ; 220(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37284884

RESUMEN

Obesity and type 2 diabetes (T2D) are the leading causes of the progressive decline in muscle regeneration and fitness in adults. The muscle microenvironment is known to play a key role in controlling muscle stem cell regenerative capacity, yet the underlying mechanism remains elusive. Here, we found that Baf60c expression in skeletal muscle is significantly downregulated in obese and T2D mice and humans. Myofiber-specific ablation of Baf60c in mice impairs muscle regeneration and contraction, accompanied by a robust upregulation of Dkk3, a muscle-enriched secreted protein. Dkk3 inhibits muscle stem cell differentiation and attenuates muscle regeneration in vivo. Conversely, Dkk3 blockade by myofiber-specific Baf60c transgene promotes muscle regeneration and contraction. Baf60c interacts with Six4 to synergistically suppress myocyte Dkk3 expression. While muscle expression and circulation levels of Dkk3 are markedly elevated in obese mice and humans, Dkk3 knockdown improves muscle regeneration in obese mice. This work defines Baf60c in myofiber as a critical regulator of muscle regeneration through Dkk3-mediated paracrine signaling.


Asunto(s)
Diabetes Mellitus Tipo 2 , Comunicación Paracrina , Humanos , Adulto , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Ratones Obesos , Músculo Esquelético/metabolismo , Regeneración
18.
RSC Adv ; 13(2): 764-769, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36686929

RESUMEN

Preorganized ligands such as bis-lactam-1,10-phenanthroline (BLPhen) show unique selectivity trends across the lanthanide series, indicating the synergistic effects of both N and O donors in complexing with lanthanides. We hypothesize that by replacing amide functional groups with an N-oxide functionality would open the door to new ligand architectures with improved selectivities. To test this idea, we computationally examined mixed N,O-donor ligands containing pyridinic N and N-oxide groups and evaluated their relative aqueous La(iii)/Ln(iii) selectivity by computing free energy changes for the exchange reaction between the designed ligands and a reference ligand. Three novel ligands show promise as excellent extractant agents in selectively separating trivalent lanthanides. The extent of conjugation (and hyperconjugation), the complex geometry, and the electron accumulations on the two O-donors of the N-oxide groups are found to be important factors in dictating the selectivity trends.

19.
CNS Neurosci Ther ; 29(4): 1012-1023, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36691817

RESUMEN

AIMS: We performed cell and animal experiments to explore the therapeutic effect of artemisinin on Parkinson's disease (PD) and the TLR4/Myd88 signaling pathway. METHODS: C57 mice were randomly divided into the blank, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced and artemisinin-treated groups. Clinical symptoms, the number of dopaminergic (DAergic) neurons in the substantia nigra, and microglial cell activation were compared among the three groups. Subsequently, BV-2 cell activation and TLR4/Myd88 pathway component expression were compared among the blank, MPP+ -treated, artemisinin-treated, and TLR4 activator-treated groups. RESULTS: Behavioral symptoms were improved, the number of DAergic neurons in the substantia nigra of the midbrain was increased, and microglial cell activation was decreased in artemisinin-treated MPTP-induced PD model mice compared with control-treated MPTP-induced PD model mice (p < 0.05). The cell experiments revealed that artemisinin treatment reduced MPP+ -induced BV-2 cell activation and inhibited the TLR4/Myd88 signaling pathway. Moreover, the effect of artemisinin on the BV-2 cell model was inhibited by the TLR4 activator LPS (p < 0.05). CONCLUSION: Artemisinin may reduce damage to DAergic neurons in a PD mouse model by decreasing microglial activation through the TLR4-mediated MyD88-dependent signaling pathway. However, this finding cannot explain the relationship between microglia and DAergic neurons.


Asunto(s)
Artemisininas , Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/metabolismo , FN-kappa B/metabolismo , Microglía , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Sustancia Negra , Neuronas Dopaminérgicas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Artemisininas/farmacología , Artemisininas/uso terapéutico , Artemisininas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
20.
Materials (Basel) ; 16(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676449

RESUMEN

The leakage behavior of ferroelectric film has an important effect on energy storage characteristics. Understanding and controlling the leakage mechanism of ferroelectric film at different temperatures can effectively improve its wide-temperature storage performance. Here, the structures of a 1 mol% SiO2-doped BaZr0.35Ti0.65O3 (BZTS) layer sandwiched between two undoped BaZr0.35Ti0.65O3 (BZT35) layers was demonstrated, and the leakage mechanism was analyzed compared with BZT35 and BZTS single-layer film. It was found that interface-limited conduction of Schottky (S) emission and the Fowler-Nordheim (F-N) tunneling existing in BZT35 and BZTS films under high temperature and a high electric field are the main source of the increase of leakage current and the decrease of energy storage efficiency at high temperature. Only an ohmic conductive mechanism exists in the whole temperature range of BZT35/BZTS/BZT35(1:1:1) sandwich structure films, indicating that sandwich multilayer films can effectively simulate the occurrence of interface-limited conductive mechanisms and mention the energy storage characteristics under high temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...